
Approaches on Detecting Domain Errors – A
Survey

Dr. Anna Saro Vijendran*1, N.R.Suganya#2
*1Director, Dept of Computer Applications, SNR Sons College

 Coimbatore, Tamilnadu, India
#2Research Scholar, Karpagam University

 Coimbatore, Tamilnadu, India

Abstract - The past decades of research in software testing has
foreseen the development of n number of techniques for
assessing the domain correctness of software units. A method
of programming and debugging causes many types of errors.
Types of errors would have some classifications based on the
nature of the program. One of those is the occurrence of
domain errors in programs. The major challenge in this area
is to generate a set of test cases automatically and test it with
various techniques. Main goal of this survey is to allow the
software testers and developers to become aware of where the
error origins and how it would be tested? The following steps
are elucidated in detail of how a program should be tested - by
test case generation, by test case tools and by test case
algorithms with the presence of some correct behavior in
programs. This paper presents a short survey of past decades
on how the errors have been handled by the testers.

Keywords— Domain Errors, Test Case Generation, Tools,
Algorithms, Approaches and Methods.

I. INTRODUCTION

Testing is done in an intention of finding errors. “A
program is said to exhibit a domain error when incorrect
output is generated due to executing the wrong path through
the program”. Simple example for a domain error is when a
floating point is rounded off to an integer. A domain error
occurs when an input value origins the program to execute
the wrong path. A program is said to have a domain error if
it erroneously performs input cataloguing. Domain errors
are being tested by a testing technique known as domain
testing. Domain testing is one of the major categories of
software testing. The core of domain testing is that to
partition a domain into sub domains (equivalence classes)
and then select some representatives of each sub domain for
our tests. A domain error arises from incorrect
implementation of designed domains and the way of testing
provides finding of errors in the numeric expressions
affecting the flow of control through the program. There are
many testing techniques which deal with the detection of
domain errors in some functions using only a single
additional test point. This paper provides the different test
case generation tools and algorithms which will help the
testers to prevent domain errors in their projects.

II. REVIEW OF LITERATURES

In the olden days the domain errors where identified
based on the feasibility of data gathering, error density,
means of error detection, reason and nature of code change,
cases were change not required, effort to diagnose, effort to
correct and the efficiency of hand processing Vs computer
testing says M.L.Shooman & M.I.Bolsky [1]. Based on

these techniques the types of errors, their nature and their
frequency with the effort to diagnose and the way to correct
them can be described. Whatever the dimensions may be
(linear/non-linear) with dimensions either two or three the
errors can be detected.

A frequency domain approach was adopted in 1997 to
tackle the problem of validating uncertainty models
described by linear fractional transforms. This problem
amounts to verifying the consistency of certain given
mathematical models to experimental information obtained
from a physical plant, using either input–output, frequency-
domain measurements or frequency samples of the plant.
Linear fractional models with both unstructured and
structured uncertainties are considered. The problem is
resolved in the former case and solved approximately in the
latter. Both results lead to tests that are readily computable
via convex optimization methods and can be implemented
using standard algorithms. In comparison to previously
available algorithms based on time-domain information, the
main advantage of these tests is that they have a
considerably lower level of computational complexity. It is
shown that the validation problem reduces to one of
Nevanlinna–Pick boundary interpolation, and it can be
solved by computing independently a sequence of convex
programs of a lower dimension, each of which corresponds
to only one frequency sample. Many mathematical
formulations and validated examples are given for this
domain approach. [2]

Systems with the length-based Church-Rosser property
have a highly efficient method of reduction of a sting to a
canonical form. It shows how to construct, for any such
system, an automaton with two pushdown stores that can
reduce any string over the alphabet to its canonical form in
time that is linear in the length of the string. It was assume
that we have a mixed system (C, E, R) with the length-
based Church-Rosser property. To execute the first
reduction step of a given string, we must find a factor of
that string that is the left member of a rule of R; such a
factor let us call a “handle.” There may be several handles
in the string, so we must decide both how we should begin
our search for handles and which handle should be the first
to be rewritten. Eventually we shall come to a sting without
a handle, at which point the reduction is complete: the final
string is an irreducible equivalent of the original string. And,
since the system has the Church-Rosser property, it is the
only irreducible equivalent string.

Suppose in a given step of the procedure that we have
reduced wl x w2 to w1 y w2, where (x, y) � R, and where wt
is long. In order to find the leftmost handle in wl y w2, we
do not have to begin our search at the left end of w1. We

Anna Saro Vijendran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2204-2212

2204

can be sure from what has happened so far that w1 has no
handle. (We omit the proof of this fact, which is by
mathematical induction on the number of reduction steps
that have taken place.) More precisely, let h be the length of
the longest left side of a rule of R minus 1. If │ w1│ > h
then, taking w1 = w12 w13 where │ w13│ = h, we can confine
our search to w13 y w2, ignoring w12 completely for this step.
If │ w1│ < h then, of course, we must begin our search at
the left end of w1. This completes our description of the
algorithm, from which it can be proved that it will always
result in the unique irreducible string equivalent to the
original, provided that the system has the Church-Rosser
property. Everything that has been said so far about the
algorithm holds even if the Church-Rosser property is not
the length based property. However, the analysis that
follows, showing that it is a linear-time algorithm, requires
the length-based property. If the system is not Church-
Rosser at all, an equivalent irreducible string will be found,
but there is no guarantee that it will be unique or have
minimal length. In order to analyze the algorithm it is
convenient to modify the notion of step. Let us stipulate
that the algorithm begins at time 0 with a pointer at the
leftmost character of the input string. Thereafter, the string
will be modified and the pointer will be moved.

 kl +k2 < k1 + (l +h) g < (2+h)g.

And so the author is able to conclude that the

computation time for the algorithm is bounded by a linear
function of g. This algorithm would be easily implemented
as a computer program, which, if care is taken in the
writing, runs in linear time. [3]

For dataflow and domain testing, the control structure of
the program being tested is represented by a directed graph
(digraph), called the control flow graph or flow graph. A
digraph G = (V, E) consists of a set of nodes V, and a set of
edges E. A node vi represents a basic block (a single-entry
single-exit sequence of code always executed together), and
an edge (vi , vj). Represents possible transfers of control
from node i to node j. If (vi , vj) � E, node vi is a
predecessor of vj and vj is a successor of vi. Without loss of
generality we assume that G has a unique node with no
predecessor, the source s, and a unique node with no
successor, the sink t. A path from vi to vj is an alternating
sequence of nodes and edges starting with vi and ending
with vj. An execution of the program corresponds to a
complete path from the source s to the sink t. While, in a
program, predicates are expressed by the program variables,
it is useful to represent them in terms of the input variables.
This is done by a technique called symbolic execution
which assigns a symbolic name to each input variable and
executes the path through the program. A predicate in this
path, after being symbolic executed, will generate a result
called a predicate interpretation, in which each variable
appearing in the predicate is replaced in terms of input
variables in symbolic forms. The path domain with respect
to a path p, denoted dom(p), is defined by the path
condition associated with p. If the path condition is
consistent, then dom(p) is not empty and the path is feasible;
otherwise dom(p) is empty, and the path is infeasible. For a
deterministic program, the intersection of dom(p) and
dom(q) will be empty if p and q are different since each
input traverses exactly one path.

Fault analysis shows that the effectiveness of a testing
strategy depends on the satisfaction of both path-
discrimination and data-discrimination conditions as
discussed earlier. Since few of the existing strategies meet
both conditions, in this article we have proposed an
integration of two different testing techniques in order to
make use of each one's strengths. Data flow testing traces
the behavior of a variable definition (path-discrimination),
but is not effective in the detection of certain faults.
Domain testing is effective in fault detection within a path
domain (data-discrimination), but lacks a criterion to guide
the selection of testing paths. Integration inherits their
strengths but not their deficiencies. It meets both path-
discrimination and data-discrimination conditions. By a pair
of carefully selected test cases, its correctness will then be
reflected as different branches taken by the path. That is, a
wrong path will be traversed if a fault does exist, which is
of course easier to judge and be found. Evaluation of the
fault-detection ability of a testing strategy, however, is very
difficult. More indicative experiments will have to wait
until a tool that implements this testing strategy is created
so that many programs can be executed automatically. This
approach, however, is a new breed which shows that the
two techniques need not be treated separately (i.e., it is both
structural and fault based). Since it has been widely
accepted that none of the testing strategies is without
deficiencies, and usually one's weak points are another's
strong points, it is believed that the combination of different
testing strategies to gather together their strengths is a
promising research direction. The integration of data flow
and domain testing strategy proposed in this paper
illustrates such a possibility. [4]

The next approach introduces test classes and a test class
framework for generating test cases from Z specifications.
We define a test class using object-oriented concept in test
framework instead of Phil Stock’s test template. This test
framework for Z specifications uniformly defines the test
data and oracles in a test class that also contains the
information of before states and after states for an operation.
Thus, the derivation and construction of test case and test
sequence information can be unified in a test framework. It
presents an example to demonstrate how to generate test
cases using the test framework. To support the framework,
we have designed and implemented a test case generation
system, TCGS, and its functions.

The Author has used a structured approach to build a
hierarchy of test class. Our test class hierarchy is similar to
Phil Stock's test template hierarchy. We have designed and
implemented a test case generation system TCGS which is
a subsystem of our Z User Studio, a Z notation support
system. TCGS produces test cases for an operation from Z
specification. The generated test cases are saved in a file
which takes the name of operation schema as file name
and .tst as extension name. The whole process of generating
test cases is defined in Z schema. It runs under Windows98.
The user can browse the contents of a test class by clicking
the test class. For sake of space, we can not describe details
of the design and implementation of TCGS. We only show
the part of execution interface. When starting testing, TCGS
shows dialog box start test, the user then select the name of
operation schema under test.

Anna Saro Vijendran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2204-2212

2205

The author has defined a test class framework using
object-oriented concept. The benefit of this test framework
for Z specifications is that the test data and oracles are
uniformly defined in a test class which also contains the
information of before states and after states for an operation.
Thus, the derivation and construction of test cases and test
sequence information can be unified in a test framework. [5]

Classification tree is one of the methods of generating
test cases from specification given by the author. It
partitions the input domain into a number of classifications.
A classification tree is created to depict the relationship
among the classifications. Test cases were then derived
from this tree. However classification trees have a number
of shortcomings. The expressive power is limited by the
tree structure. It also relies much on human decision in
selecting test cases. This paper has introduced an alternative
approach to the generation of test cases. It also defines
classifications and classes formally. Then, it analyzes the
relations among classes and classifications and expresses
these relations in vectors (class vectors). Test cases are then
derived from the Cartesian product of these partitions of
vectors. The expressive power of vectors is better than tree
structure and hence can be applied in some systems which
test cases are complicated. Furthermore, more information
obtained in the specifications were utilized. Hence the
amount of human decision is minimized.

The classification tree method (CT) is a black box testing
technique. The fundamental concept of CT is to divide the
input domain of a program into disjoint sets of classes, and
to form test cases by choosing from these classes according
to certain criteria. A CT consists of two major components
namely classifications and classes. Classifications are
defined as aspects of viewing the input domain of the
program to be tested. Classes are defined as disjoint subsets
of values of classifications. This method consists of four
steps which are summarized as follows.

 Identify all the classifications and their classes
from the specifications.

 Construct the CT with the classifications and
classes.

 Construct the combination table from the
classification tree.

 Select all the feasible combinations of classes
from the combination table, thus each selected
combination of classes constitute one test case.
This is the step where manual decisions are
made.

There is certain weakness with CT. First, although CT
can help to structure the classifications and classes, it can
lead to many invalid test cases which require manual
decisions to filter them out. Secondly, the real relations
should be those relations between classes. For example, in,
CT has to be constructed with reference to the relations
between classes. The classifications play little role in the
test case generation. Thirdly, not all relations between
classes can be denoted by a tree structure. For example, the
relations between Card Class, Credit Limit, Purchase
Balance and Cumulative Balance were not recorded in the
classification tree. Consequently, manual decisions are
required to choose those legitimate test cases. A number of
redundancies of classifications will be required when there
are complex relations between classifications. For example,

in our case study, it is required to duplicate the
classification air-ticket type. This is because the relations
between the classification air-ticket type and each of the
classes CX and DG are different; the classification has to be
duplicated in the tree. These duplications will increase the
complexity of the classification tree. The increase in
complexity will increase the chance of making mistakes.
There are also problems with the expressive power of
classification tree. For example, according to the
specifications, the classification purchase balance has to be
partitioned into four classes namely Al, A2, A3 and A4.
However, the classification tree cannot express the
information that there is no relation between A4 and the
classification credit limit. This has to be determined by
manual decisions during test case generation. CT has no
formal semantics which may cause ambiguity in performing
analysis.

The Classification Tree method of generating test cases
from specification and found that there are a number of
shortcomings. Two of these, namely the inability to capture
certain complex relations among the classes and the need of
manual filtering of test cases, are considered very
undesirable. One major cause is due to the tree structure
that is unable to utilize all information in the specification
and to express the complexity of the specification. To
overcome this, the author has proposed an alternative
approach. It uses more general structures, relations and
vectors, to capture the information in the specification and
to represent the test cases. It formally defined a number of
fundamental concepts about legitimate test cases and
developed a procedure of generating test cases using these
definitions. On the whole, this approach was more algebraic.
One of the reasons of this approach is that it aims at
developing automated or mechanical tools to support the
generation of test cases. On the other hand, it has been
working on a more visual version along the similar
approach. In that graphs are used to express the relations
among the classes and classifications. [6]

The significant expansion of autonomous control and
information processing capabilities in the coming
generation of mission software systems results in a
qualitatively larger space of behaviors that needs to be
“covered’ during testing, not only at the system level but
also at subsystem and unit levels. A major challenge in this
area is to automatically generate a relatively small set of
test cases that, collectively, guarantees a selected degree of
coverage of the behavior space. The below part describes an
algorithm for a parametric test case generation tool that
applies a combinatorial design approach to the selection of
candidate test cases. Evaluation of this algorithm on test
parameters from the Deep Space One mission reveals a
valuable reduction in the number of test cases, when
compared to an earlier home-brewed generator.

Both TCG and AETG use the greedy approach, which
assumes that there is no need to backtrack to find
potentially better solution. This simplifies the algorithm and
reduces the computation time, yet the result is proven to be
close to optimal. The TCG algorithm differs from AETG’s
mainly in that the former uses a deterministic method while
the latter is using random selection. In the AETG algorithm,
each partial test case is determined by first generating M
different candidate test cases and then choosing one that
covers the most new pairs, where M is selected to be 50 for

Anna Saro Vijendran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2204-2212

2206

best result. We found that when there is more than one
“greatest” or “least” number of something when carrying
out the algorithm, selecting one with a fixed order (such as
top first) will end up with much less than optimal result.
The largest number of values in the set defines the lower
bound of the number of test cases to be generated in a 1-
way coverage (i.e. when every parameter is independent of
each other), because each value of that parameter is
required to appear at least once. In the case of n-way
coverage, meaning every combination of 12 parameters
has to have .all possible values in’ the set of selected test
cases; we use the first 12 parameters or the II largest-sized
parameters, to find the lower bound of test cases to be
generated. The TCG algorithm starts to build up test cases
from values selected for these first 11 parameters.

At times a selected test case covers more new pairs than
a previous selected test case. This suggests that we did get a
sub-optimal test case with the “greedy” approach. To
improve this we could take a “non-greedy‘’ approach and
back tract one or a few steps. But since this approach will
complicate the algorithm and will increase computation
steps, it is not clear if the extra costs on the algorithm
development and the computation time are worth while. If
so, we may elect to switch from “greedy” to “back-
tracking’’ when, and only when we run towards the end of
the algorithm. It will be interesting to learn how much we
can improve using this approach. The MDS TCG tool is
being implemented in Java. While the core part of the
algorithm has been completed and tested, its other features
are still limited at this writing. There are useful features
currently being implemented, including the following:

 Seeds.
 N-way coverage.
 Constraints.

The TCG algorithm illustrates the value of a
combinatorial design approach in parameter based test case
generation. Nearly identical results with TCG and AETG
confirm that this algorithm is on a par with the commercial
state of the art. By implementing this algorithm as a
reusable software component, it can then be embedded in a
variety of test harnesses. This helps a project’s verification
effort apply a consistent, disciplined approach to achieving
a selected degree of test coverage with a near-minimal
number of test cases. [7]

Errors are classified in two main categories, Non
effective and Effective errors. The Non-effective errors
correspond to errors, which were either latent or overwritten.
Latent errors indicate that the injected fault had no effect on
the program execution, but the observable state of the CPU
differed from the fault-free state when the program finished.
Overwritten errors indicate that the injected fault was
overwritten without causing any other effect on the system.
[8]

The next approach introduces DIDUCE (Dynamic Invariant
Detection U Checking Engine)., a practical and effective tool
that aids programmers in detecting complex program errors
and identifying their root causes. By incrementing a
program and observing its behavior as it runs, DIDUCE
dynamically formulates hypotheses of invariants obeyed by
the program. DIDUCE hypothesizes the strictest invariants
at the beginning, and gradually relaxes the hypothesis as
violations are detected to allow for new behavior. The
violations reported help users to catch software bugs as

soon as they occur. They also give programmers new
visibility into the behavior of the programs such as
identifying rare comer cases in the program logic or even
locating hidden errors that corrupt the program's results.
The author has implemented the DIDUCE system for Java
programs and applied it to four programs of significant size
and complexity. DIDUCE succeeded in identifying the root
causes of programming errors in each of the programs
quickly and automatically. In particular, DIDUCE is
effective in isolating a timing-dependent bug in a released
JSSE (Java Secure Socket Extension) library, which would
have taken experienced programmer days to find. Our
experience suggests that detecting and checking program
invariants dynamically is a simple and effective
methodology for debugging many different kinds of
program errors across a wide variety of application domains.

DIDUCE was especially helpful in pinpointing late-stage
bugs that occur after many test cases are already running.
Late-stage bugs are usually the hardest to find and take the
longest to analyse. Experimentation with four real-life
applications suggests that DIDUCE is effective in detecting
hidden errors and finding the root causes of complex
programming errors. It can find bugs that result from
algorithmic errors in handling corner cases, errors in inputs,
and developers’ misconceptions of the APIs. It helps
programmers locate bugs in unfamiliar code and,
sometimes even in codes that have not been instrumented.
Furthermore, no up-front investment is required; users start
using DIDUCE only when they are confronted with a bug,
or the possibility of one. While we used only the simple,
default invariants in our experiments, users can tailor
DIDUCE to check for more complex invariants to suit the
specific application. [9]

CPM is a specification-based testing technique
developed by Ostrand and Balcer. It helps software testers
create test cases by refining the functional specification of a
program into test specifications. It identifies the elements
that influence the functions of the program and generates
test cases by methodically varying these elements over all
values of interest. The method consists of the following
steps:

 Decompose the functional specification into
functional units that can be tested independently.

 Identify the parameters (the explicit inputs to a
functional unit) and environment conditions (the
state of the system at the time of execution) that
affect the execution behavior of the function.

 Find categories (major properties or
characteristics) of information that characterize
each parameter and environment condition.

 Partition each category into choices, which
include all the different kinds of values that are
possible for that category.

 Determine the constraints among the choices of
different categories. For example, one choice
may require that another is absent or has a
particular value.

 Write the test specification (which is a list of
categories, choices, and constraints in a
predefined format) using the test specification
language TSL.

Anna Saro Vijendran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2204-2212

2207

 Use a generator to produce test frames from the
test specification. Each generated test frame is a
set of choices such that each category
contributes no more than one choice.

 For each generated test frame, create a test case
by selecting a single element from each choice
in that test frame.

They have developed a choice relation framework for
supporting category-partition test case generation. The
major merits of the framework are:

 We capture the constraints among choices in a
rigorous and systematic manner via the
introduction of various relations.

 We improve on the effectiveness and efficiency
of complete test frame construction by means of
consistency checks and automatic deductions of
relations.

 We provide a means of removing only the
incorrectly defined relations and any related
ones, thereby saving the effort of repeating the
entire construction process for the choice
relation table.

 We provide a direct way to control the
maximum number of generated test frames. We
enable the software tester to specify the relative
priorities for choices that are used for the
subsequent formation of complete test frames.

The author has applied his approach to real-life situations
and reported on the effectiveness of consistency checks and
automatic deductions of choice relations. [10]

Because of the complexity of testing at the system level,
it is appropriate to use more than one mode to represent
system behavior. The approach taken in this work is to
establish two levels of modeling to be used in the
generation of test cases. Behavior modeling is established to
capture high-level sequential behaviors required of the
system. Data modeling is established to manage the
concrete test data values for each scenario in order to
generate executable test vectors. This approach is motivated
by our experience with the limitations using single model
techniques at the system level. The work is also motivated
by approaches using formal specifications, especially, in
which several different models are used to support test case
generation.

A test scenario is a high level abstraction of system
behavior that describes an important sequence of actions to
test, but it is insufficient to make a test vector that is
executable in a test harness because it lacks concrete test
data values. Under our approach, a data model is created to
manage the SUT’s test data. Models are useful in the
generation of test cases to the extent that they support
“good” testing ideas. Models that restrict a tester’s vision as
to what can or cannot be tested, or models that obscure
good testing ideas in millions of generated test cases are
less than useful. We have introduced an approach to test
case generation that combines behavior and data modeling.
A data model is created at the level of sophistication
warranted by the importance of each test scenario. The data
model allows the tester to manage the SUT’s test data and
to address the expected outcomes of test cases using IO
relationships. A positive outcome is that large, fully
automated test suites are generated and executed. In

addition, two cases studies indicate that a larger number of
the required test cases were generated using the combined
approach than were generated when using data modeling
alone. While the approach presented will not be applicable
in all testing situations, we believe it should be considered
as way to improve test case generation. [11]

The author has presented a novel approach to
automatically generate ON-OFF test points for character
string predicate borders associated with program paths, and
develop a corresponding test data generator. Instead of
using symbolic execution or program instrumentation, it
constructs a slice with respect to a predicate on a path via
program slicing techniques. The current values of variables
in the predicate are calculated by executing the slice, thus
avoiding the problems found in symbolic execution and the
costly and time-consuming jobs for designing proper
instrumentation statements. Each element of variables in a
character string predicate is determined in turn by
performing function minimization so that the ON-OFF test
points for the corresponding predicate border are
automatically generated.

All recent domain testing strategies have been limited to
programs in which character string predicates are not taken
into consideration. The same weakness is found in many
currently available test data generation system. In his paper,
he has presented a novel approach to automatically generate
ON-OFF test points for character string predicate borders
associated with program paths, and develop a
corresponding test data generator by Jeng simplified
domain testing strategy. Symbolic execution or program
instrumentation is not involved in the system. Instead, a
predicate slice is constructed to calculate the current values
of variables in the predicate, avoiding the problems found
in symbolic execution and the cost of designing proper
instrumentation codes. [12]

A classification of program errors with strong intuitive
appeal is the division into domain errors and computation
errors, in which errors usually arise from the predicate
faults in conditional statements or from assignment faults in
a program. A domain error can be manifested by a shift or a
tilt in some segment of the path domain boundary and
therefore incorrect output is generated due to executing a
wrong path through the program. Domain testing is
applicable whenever the input domain is divided into sub
domains by the programs decision statements. A test point
is a set of values of all the input variables in which one
value is bound to one variable. In this approach, the test
points are selected not from an executable program but
from formal specification. Because a formal specification
defines a system at an abstract level, the cost of domain
modeling and test point selection will likely be
decreased. [13]

The beginning software testers use the test methods of
white-box and black-box testing. To find out the domain
errors instead of using similar type of testing the basic
methods are used which does not allow the testers to
complete the testing in an effective manner. This type of
testing methods cannot be guaranteed. To generate test
cases that execute specified paths in a program there are
many search algorithms as it was said earlier one thing is
the genetic algorithm. Other is the simulated annealing
algorithm which of all these are used mainly in path
testing. [14]

Anna Saro Vijendran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2204-2212

2208

Important technique for the reuse of test tools is the
Match technique. This algorithm begins to match from the
node of the leaf and look for the test case of using the node
of the root progressively, match and generate the test case.
In case if any merge or reformation of test case is needed
that also can be done in this technique. There are following
problems always meet in the test: faced source code that not
tested, sequence which test code carrying out are different
from the original execution, input the data that not tested,
user's operating environment changed. The problem
emerges in the test is not go on totally, but many kinds of
factors test influences test task, such as time, the human
resource and ability. The development of the test case
accounts for about 40% testing cycle. The prerequisite of
test case reuse: Firstly, there exist test case that could be
reused; secondly, the test case reuse must be available;
thirdly, testers must know how to reuse the test case.
Therefore, whether describe and manage correctly of test
case is the key technology in the test case reuse. Generally,
a test case always corresponds to test object, specific test
goal and relevant test context. The main problem is that
how to organize test case and make each test case execute
independently effectively. Four principles for automation
test of the reuse script of automate test are presented: firstly,
to design separate test case independently; secondly, to
design the test case including itself; thirdly, to design the
test case based on starting point; lastly, to design the test
case with non-interval and non-overlap. Among them, the
first two principles require have the most cohesive and
minimum coupling nature with the test case according to
idea of module design in the program. The third principle
require no linear dependent relation with initial status
merely relates to basic state tested, and for the last principle
non-interval require the test case should consist function
and system character. Non-overlap means dissipate the
redundancy in the test case. The paper focus on the manual
test method based on reused test case and black box test.
The ability of search test case needs relatively high because
the following reasons. The one reason is that black box care
behavior of software only to test, and does not care about
the logic structure software. The other is generally a text
way that descript of the test case is not higher visual degree
to the user. The presented algorithm begins to match from
the node of the leaf, and look for the test case of using the
node of the root progressively, match and generate the test
case.

The technique can generate the test case automatically
based on the reused test case library and fulfil the
development of test case for black-box test. The reused test
case can speed up the development of test case. A large
amount of suitable test case can be reused for find out and
get better coverage rate. [15].

The approach utilizes the advantage of Regression
Testing where fewer test cases would lessen time
consumption of the testing as a whole. The technique also
offers a means to perform test case generation automatically.
As for the test cases reduction, the technique uses simple
algebraic conditions to assign fixed values to variables
(maximum, minimum and constant variables). By doing
this, the variables values would be limited within a definite
range, resulting in fewer numbers of possible test cases to
process. The technique cover all can also be used in
program loops and arrays.

 To reduce number of all test cases. Generally,

the larger the input domain, the more exhaustive
the testing would be. To avoid this problem, a
minimum set of test cases needs to be created
using an algorithm to select a subset that
represents the entire input domain.

 To find the technique for automatic generation
of test cases. To reduce the high cost of manual
software testing while increasing reliability of
the testing processes. With the automatic
process, the cost of software development could
be significantly reduced.

 To keep a minimum number of test runs. The
best technique must be able to generate test
cases from only one example test run.

There are four steps to generate test cases:

 Finding all possible constraints from start to
finish nodes. A constraint is a pair of algebraic
expressions which dictate conditions of
variables between start and finish nodes (>, <, =,
≥, ≤, ≠).

 Identifying the variables with maximum and
minimum values in the path, if any. Using
conditions dictated by the constraints, two
variables, one with maximum value and the
other with minimum value, can be identified. To
reduce the test cases, the maximum variable
would be set at the highest value within its
range, while assigning the minimum variable at
the lowest possible value of its range.

 Finding constant values in the path, if any.
When constant values can be found for any
variable in the path, the values would then be
assigned to the given variables at each node.

 Using all of the above-mentioned values to
create a table to present all possible test cases.
The proposed technique has achieved greater
reduction percentage of the test cases while
keeping test cases generation to a single run.

Furthermore, for compilation, it has been found that the
technique is the least time consuming among the three.
Based on these metrics, the proposed Coverall algorithm
can be considered a superior technique from all others
available in current literatures. Limitation of the Coverall
algorithm lies in its requirement for identification of fix
values for all variables, either as maximum, minimum or
constant values. [16]

A test team will use approaches such as these alone or in
combination:

 Selection by vulnerability.
 Selection by state changes.
 Selection for path coverage.
 Selection for state coverage.
 Selection by Monte Carlo testing.
 Selection by envelope.

The Dawn mission consists of robotic spacecraft
performing a double rendezvous with asteroids Vesta and
Ceres over an eleven-year period. Aside from the need for
quick solar array deployment and sun-pointing after
separation from the launch vehicle, the Dawn spacecraft has

Anna Saro Vijendran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2204-2212

2209

no time constrained mission critical events by virtue of it's
Ion Propulsion Engines. The encounter with the asteroids
will be leisurely compared to the excitement of a Mars
entry, descent, and landing activity, for example. The lack
of such time critical activities allows Dawn to pursue a
basic safe and wait strategy for most fault scenarios,
requiring autonomous hardware swapping to cover only the
core services needed to maintain safe mode. The method of
test case generation for Dawn was part targeting known
tricky areas from past experience, and part random failure
of key components, especially those critical to S/C health
and safety. The goal is to have complete coverage, so as to
exercise the entire fault protection subsystem. Tests were
generated and prioritized by criticality - since launch was
the first key event, it was focused on first, and while its
cases ran, other mission phases were added in parallel with
the goal in keeping the two dedicated test platforms running
24/7 with the latest FSW version. [17]

The automatic test generation tools we have chosen try to
deal with the creation of regression and defect revealing
tests. The main difference between those two issues is
within the approach used to solve the “oracle problem”. In
the first case, the tools create tests that characterize the
actual behavior of the code. They record and test not what
the code is supposed to do, but what it actually does. They
consider the tested software as the oracle (i.e. whichever
output it produces is correct). We selected two tools (JUnit
Factory and Randoop) characterized by good usability and a
very reasonable learning curve. On the other hand, the tools
which generate defect revealing tests could solve the oracle
problem either by asking the user to define what he expects
from a class or by relying on language error handling. We
wanted to find the easiest and most effective solution
available, so we chose two tools: Randoop and JCrasher.
While the latter bases its decisions on Java raised
exceptions, Randoop only requires the developer to
describe invariants he needs on the classes through a Java
interface implementation. Hence, we prevented the engineer
from wasting time learning new formalisms to describe the
tested system. We generated regression tests on the source
code present at the end of the manual test implementation.
On the contrary we performed automatic defect revealing
test generation on the source code as it was before the
manual implementation. This permitted a better comparison
between manual and automatic test generation approaches.
Randoop can generate both regression JUnit tests and error-
revealing test cases. The input to Randoop is a set of Java
classes to test, a time limit and an optional set of contract
checkers. The resulting output is a JUnit test suite. [18]

Sequence-Based Specification (SBS) is a systematic
approach to specify a precise mathematical black-box
description of systems. SBS consists of several techniques,
like sequence enumeration, canonical sequence analysis,
and sequence abstraction. After identifying the system’s
boundary, (i.e) its interfaces with associated stimuli and
responses, the sequence enumeration enumerates all
relevant stimuli sequences together with their responses and
equivalence to prior sequences. SBS can be used to check
the completeness and consistency of requirements and to
construct a traceably correct black-box specification. Test
cases can be generated according to the assigned
probabilities. Since the generated test cases can be seen as a
random and representative sample of the expected use of

the system, the test case results can be statistically analyzed
and can be used for reliability estimations of operational
use. Transition probabilities are used for test case selection
and can also be used to model safety-critical usage. In this
case, the generated test cases can be used to analyze the
safety properties of a system.

The Taguchi Method is a quality engineering method that
considers noise factors (environmental variation during the
product's usage, manufacturing variations, and component
deterioration) and the cost of failure in the field. The
Taguchi Method was extended for test case generation by
selecting a combination of parameters using an orthogonal
array. The generated test cases make it possible to detect all
double-mode faults. If a consistent problem exists when
specific levels of two parameters occur together, this is
called a double-mode fault. A double-mode fault is not a
highly probabilistic fault; however, we believe double-
mode faults are related to the unexpected failure of a system
reports that a testing strategy using the Taguchi Method is
more effective than previous testing strategies. [19]

The first successful model checking approach was
explicit model checking, which performs an explicit search
in a model’s state space, considering one state at a time.
The search might be based on a breadth first search (BFS),
depth-first search (DFS) or possibly also heuristic search
algorithm. There are several different approaches based on
different temporal logics. The main concern when using
model checkers for this task is the performance, which can
be problematic due to the state space explosion. In general
it is difficult to predict how a particular model checking
technique will perform for any given specification.
Consequently it is impossible to give detailed rules about
which model checker to use for a given specification. [20]

SpecTRM-RL notation is formal, yet the syntax is
similar to English and easy to learn to understand. A
SpecTRM-RL model describes system inputs, outputs, state
values, and internal modes. A state value represents
information inferred by the system regarding the current
operating environment. Internal modes represent different
collections of behavior. For example, a system in the mode
“Waiting for Liftoff” would respond differently than it
would when in the mode “Initiating Landing”. Several
algorithms were developed for generating sets of test cases.
These algorithms vary in the number of test cases they
generate, trading efficiency for robustness. A fully
comprehensive test suite would generally include so many
tests that it would be impractical to use. It is possible to
generate much more manageable suites of test cases that are
still effective at detecting the majority of software defects.
Each of these algorithms identifies a set of scenarios to be
tested, where a scenario is defined to be a set of conditions
that should lead to a specific system state. Once these
scenarios are identified, it is necessary to also generate
sequences of inputs that would satisfy the scenario. Safe
ware has developed algorithms to automatically generate
test cases directly from SpecTRM-RL requirements models.
Seven algorithms were considered for test case selection.
Four of these algorithms were designed to test whether the
system makes internal transitions appropriately in response
to inputs. The other three algorithms were each designed to
detect a specific type of software defect. [21]

Anna Saro Vijendran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2204-2212

2210

Author has reported on investigations regarding the
structure of test suites. In particular it is of interest how the
length of individual test cases influences the characteristics
of a test suite. To analyze this we have performed a set of
experiments, where the average length of test cases is
continually increased and the effects on test suite size,
length, coverage, redundancy, minimization, and
monitoring were observed. When deciding whether to
prefer long or short test cases there are many different
special cases depending on the testing environment that
need to be considered. For example, longer test cases are
counterproductive if minimization is applied as a post-
processing step. However, in most scenarios it seems
feasible to give preference to fewer longer test cases instead
of many short test cases: In fact an increase in test case
length can reduce the overall size and length of the resulting
test suites while actually increasing the fault detecting
capability at the same time. [22]

The first approach to the field of Object-Oriented
Evolutionary Testing, based on the concept of Genetic
Algorithms, was presented by Tonella in 2004. In this work,
the eToc tool for the Evolutionary Testing of Object-
Oriented software was described. The approach presented
involved generating input sequences for the white-box
testing of classes by means of Genetic Algorithms, with
possible solutions being represented as chromosomes. A
source-code representation was used, and an original
evolutionary algorithm, with special evolutionary operators
for recombination and mutation on a statement level – i.e.,
mutation operators inserted or removed methods from a test
program was defined. A population of individuals,
representing the test cases, was evolved in order to increase
a measure of fitness, accounting for the ability of the test
cases to satisfy a coverage criterion of choice. New test
cases were generated as long as there were targets to be
covered or a maximum execution time was reached.
However, the encapsulation problem was not addressed,
and this proposal only dealt with a simple state problem.
Our evolutionary approach for automatic test case
generation is described. The concepts presented were
implemented into the eCrash automated test case generation
tool for Object- Oriented Java software. Additionally, an
Input Domain Reduction methodology, based on the
concept of Parameter Purity Analysis, for eliminating
irrelevant variables from Object-Oriented test case
generation search problems was proposed. With our
approach, test cases are evolved using the Strongly-Typed
Genetic Programming paradigm; Purity Analysis is
particularly useful in this context, as it provides a means to
automatically identify and remove Function Set entries that
do not contribute to the definition of interesting test
scenarios. Nevertheless, the concepts presented are generic
and may be employed to enhance other search-based test
case generation methodologies in a systematic and straight-
forward manner. The observations made indicate that the
Input Domain Reduction strategy presented has a highly
positive effect on the efficiency of the test case generation
algorithm; less computational time is spent to achieve
results. [23]

The likely invariants extracted from executing a test suite,
such as the loop invariants, pre-conditions or post-
conditions, could uncover the program properties to some
extent. While the invariants extracted from executing a new

test case NTC are different from the ones extracted without
executing NTC, the test case NTC could reveal some new
properties or cover some new paths. So the test case NTC is
effective and is added to test suite. While the invariants
remain unchanged, it indicates that the test case could not
reveal any new property, so the test case should be
discarded. We integrate the generator and the invariant
extraction technique to generate and select test cases
according to the changes of the invariants. Finally we can
automatically generate test suite with high quality and
moderate size. We analyze the effect of different values of
CN through the experiment, and verify that, compared with
traditional random test case generation technique, our
technique could generate smaller test suite with the same
invariants. This reaches the goal of reducing the workload
and cost of software testing. [24]

Orthogonal test method is a kind of designing method to
research many factors and levels. It conducts tests by from
selecting a representative sample of test points, which have
evenly dispersed, neat comparable characteristics,
according to orthogonality from comprehensive tests. The
design of orthogonal experimental is based on the
orthogonal table, efficient, rapid and economic method of
the experimental design. Orthogonal test method is a kind
of scientific method which would select a suitable number
of representative test cases from many test data then to
arrange test reasonably. When designing test cases by using
orthogonal test method, first of all, we should find the
objects of impacting its function according to the
instructions of being tested software, put the objects as
factors, and put all the factors as the level of different value.
The basic idea of greedy algorithm is from an initial
solution of the problem to a given goal successively, to seek
a better solution as fast as possible. When one step of the
algorithm cannot continue to move forward, the algorithm
stops. Greedy algorithm a kind of the classification
treatment method improved, the characteristics of which are
to carry on in according to one optimized measure step by
step, and every step must be guaranteed to get access to the
local optimal solution. Greedy algorithm is not a particular
algorithm, but rather a kind of abstract one. Its specific
performance does not search for the solution space
mechanically, but selects the better local. It does not search
solution according to this greedy algorithm strategy until
completing all of the solutions, in order to find a viable
solution to meet the greedy strategy efficiently. The steps of
optimization of test cases using Greedy algorithm are as
follows:

 Setting up the set of test demand
 Test Set Optimization.

This method reached the purpose of optimization of test
cases. [25]
Decision table-based testing is a black-box or functional

testing technique. In black-box approach test data are
derived from the specified functional requirements without
regard to the final program structure. It is based on the view
that any program can be considered to be a function that
maps values from its input domain to values in its output
range. Decision table-based testing is closely related to, and
in some sense has evolved from other functional techniques
like Equivalence Class Testing and Boundary Value
Testing. [26]

Anna Saro Vijendran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2204-2212

2211

The principle of ART (Adaptive Random Testing) is to
evenly spread test cases. This principle can be implemented
in different ways and, therefore, several ART algorithms
have been developed. The first ART algorithm proposed is
known as the Fixed Size Candidate Set ART (FSCS-ART).
In this algorithm, an initial test case is randomly chosen and
run. Then, to choose a new test case, a fixed number of
candidates are randomly generated. A concern with ART is
its time complexity in test case selection. Compared with
test case generation, however, it is often more expensive or
time consuming to run a test or to verify a test result. In
these situations, it is highly desirable to have a strategy that
can reduce the number of required test case executions, and
ART helps to achieve this goal. [27].

III. CONCLUSIONS

This paper has presented the various algorithms, tools
and methods which have been developed by the researchers
so far in the area of detecting the domain errors in Object-
oriented programs. This will be very useful for the
upcoming developers and testers in software testing.
Through the years a number of different methods have been
proposed for generating test cases it can also be derived
from system requirements. One of the advantages of
producing test cases is that they can be created earlier in the
development life cycle and be ready for use before the
programs are constructed. Additionally, when the test cases
are generated early, Software Engineers can often find
contradiction and uncertainty in the requirements
specification and design documents. This will definitely
bring down the cost of building the software systems as
errors are eliminated early during the life cycle. Further, we
would choose any one of the techniques and develop them
to overcome the limitations in a better way.

REFERENCES
[1] M.L.Shooman and M.I.Bolsky member IEEE, “Types, Distribution

and Test and correction times for programming errors” on IEEE
transaction on reliability, Vol R-25, No.2, June 1976.

[2] Jie Chen, Member, IEEE, “Frequency-Domain Tests for Validation
of Linear Fractional Uncertain Models” IEEE TRANSACTIONS
ON AUTOMATIC CONTROL, VOL. 42, NO. 6, JUNE 1997.

[3] Robert McNaughton, “Contributions of Ronald V. Book to of
string-rewriting systems” Theoretical Computer Science the theory
Department of Computer Science, Rensselaer Polytechnic Institute,
Troy, NY 12180-3590. USA Theoretical Computer Science 207
(1998) 13-23.

[4] Bingchiang Jeng, “Toward an integration of dataflow and domain
testing” Department of Information Management, National Sun
Yat-Sen University, Kaohsiung, Taiwan 80424, ROC 1999 Elsevier
Science Inc.

[5] MIA Huaikou and LIU Ling, “A Test Class Framework for
Generating Test Cases from Z Specifications” 2000 IEEE.

[6] Karl R.P.H. Leung4 Wai Wongv, ”Deriving Test Cases Using Class
Vectors” 2000 IEEE.

[7] Yu-Wen Tung and Wafa S. Aldiwan, “Automating Test Case
Generation for the New Generation Mission Software System” 2000
IEEE.

[8] Joakim Aidemark, Peter Folkesson, and Johan Karlsson, “Path-
Based Error Coverage Prediction” 2001 IEEE.

[9] Sudheendra Hongal and Monica S.Lam, “Tracking down software
bugs using automatic anamoly detection” in ACM transactions
ICSE may 2002.

[10] T.Y. Chen, Pak-Lok Poon, Member, IEEE, and T.H. Tse, Senior
Member, IEEE, “A Choice Relation Framework for Supporting
Category-Partition Test Case Generation” 2003 IEEE.

[11] Patrick J. Schroeder, Eok Kim, Jerry Arshem, Pankaj Bolaki,
“Combining Behavior and Data Modeling in Automated Test Case
Generation” Proceedings of the Third International Conference On
Quality Software (QSIC’03) 2003 IEEE.

[12] Ruilian ZhaoMichael R. LyuYinghua Min, “Domain Testing Based
on Character String Predicate” Proceedings of the 12th Asian Test
Symposium (ATS’03) 2003 IEEE.

[13] Yuting Chen and Shaoying LIU, Proceedings of 11th Asia pacific
software engineering conference (APSEC 04) IEEE.

[14] Nasha Miran, “Data Generation for Path Testing” Software Quality
Journal Kluwer academic publisher’s pg 121-136, 2004.

[15] Zhenyu Liu and Ning Gu, “An Automate Test Case Generation
Approach Using Match Technique” The Fifth International
Conference on Computer and Information Technology IEEE.

[16] Preeyavis and Jiranpun, “Coverall Algorithm for Test Case
Reduction” IEEEAC, IEEE transactions 2005.

[17] Kevin J. Barltrop, Kenneth H. Friberg, Gregory A. Horvath
“Automated Generation and Assessment of Autonomous Systems
Test Cases” IEEE 2007.

[18] Alberto Bacchelli, Paolo Ciancarini and Davide Rossi, “On the
effectiveness of manual and automatic unit test generation” The
Third International Conference on Software Engineering Advances
2008 IEEE.

[19] Haruka Nakao and Robert Eschbach, “Strategic usage of test case
generation by combining two test case generation approaches” The
Second International Conference on Secure System Integration and
Reliability Improvement IEEE 2008.

[20] Gordon Fraser and Angelo Gargantini, “An Evaluation of Model
Checkers for Specification Based Test Case Generation” 2009
International Conference on Software Testing Verification and
Validation IEEE.

[21] Kenneth Kelley, “Automated Test Case Generation from Correct
and Complete System Requirements Models” IEEE 2009.

[22] Gordon Fraser and Angelo Gargantini, “Experiments on the Test
Case Length in Specification Based Test Case Generation” AST’09
2009 IEEE.

[23] José Carlos Bregieiro Ribeiro , Mário Alberto Zenha-Rela,
Francisco Fernández de Vega, “Test Case Evaluation and Input
Domain Reduction strategies for the Evolutionary Testing of
Object-Oriented software” Information and Software Technology
51 (2009) 1534–1548 Elsevier.

[24] Fanping Zeng, Qing Cao, Liangliang Mao and Zhide Chen, “Test
Case Generation based on Invariant Extraction” 2009 IEEE.

[25] Kenneth Kelley, “The research of test case generation and its
optimization methods based on orthogonal test method and greedy
algorithm” International conference on Intelligent Human machine
system and cybernetics 2009.

[26] Mamta Sharma and Subhash Chandra B, “Automatic Generation of
Test Suites from Decision Table - Theory and Implementation”
2010 Fifth International Conference on Software Engineering
Advances IEEE.

[27] Zhi Quan Zhou, “Using Coverage Information to Guide Test Case
Selection in Adaptive Random Testing” 2010 34th Annual IEEE
Computer Software and Applications Conference Workshops.

Anna Saro Vijendran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2204-2212

2212

